Synthesis and Characterization of the Novel Molecular Sieve CFSAPO-1

HEYONG HE and YINGCAI LONG

Department of Chemistry, Fudan University, Shanghai, People's Republic of China

(Received: 25 August 1986; in final form: 5 January 1987)

Abstract. A novel type of molecular sieve named CFSAPO-1 was synthesised hydrothermally in a system of MA(methylamine)- $Al_2O_3-P_2O_5-SiO_2-H_2O$ at 150°C. The molar composition of reactants was: MA: $Al_2O_3: P_2O_5: SiO_2: H_2O = (0.8-1.2): (0.4-3): 40$. XRD, IR, thermoanalysis, and adsorption studies show that the original product CFSAPO-1 is transformed into a form with molecular sieve properties after calcination. The free dimension of the adsorption window of the form is 5.8-6.2 Å. There were no distinctly thermal effects on the DTA curve at 600°C and 800°C related to two transformations detected by X-ray diffraction.

Key words: Molecular sieves, silicophosphoaluminate, CFSAPO-1.

1. Introduction

At the beginning of this decade, a new class of molecular sieves which were different from aluminosilicate zeolites were prepared. The Union Carbide Corporation first reported the AlPO₄ molecular sieves in 1982 [1] and the silicophosphoaluminate molecular sieves (SAPO) in 1984 [2, 3]. SAPO show interesting framework structures like AlPO₄ molecular sieves and ion-exchange properties. Recently, a series of aluminophosphate molecular sieves with Fe, Mg, Zn, Co, and Mn were reported [4, 5]. The synthesis, chemistry and catalysis of these nonaluminosilicate molecular sieves are being studied because of their special structures and properties [6, 7].

A novel type of silicophosphoaluminate named CFSAPO-1 was synthesised hydrothermally in a system of $Al_2O_3-P_2O_5-SiO_2-H_2O$ with the simplest amine-methylamine (MA) added as a template. CFSAPO-1 possesses a characteristic X-ray powder diffraction pattern. The original CFSAPO-1 was transformed into a form with molecular sieve properties upon heating to a certain temperature.

2. Synthesis of CFSAPO-1

2.1. RAW MATERIALS

Alumina source: pseudoboehmite, produced by Changling Petroleum Process Plant $(Al_2O_3 = 59.2\%)$. Phosphorous source: orthophosphoric acid $(H_3PO_4 = 85.3\%)$. Silica source: silicasol $(SiO_2 = 24.52\%, Na_2O = 0.644\%)$. MA: MA aqueous solution of reagent grade (MA = 38.2%).

2.2. SYNTHESIS

A reactant mixture was prepared by combining pseudoboehmite with water, orthophosphoric acid, silicasol, and MA in that order. After the addition of each chemical, the reactant was stirred until formation of a homogeneous mixture was achieved. Finally, the mixture was poured into a stainless steel autoclave with 30 cm³ volume and heated at an assigned constant temperature with a precision of $\pm 2^{\circ}$ C in an oven. The solid product was washed with water, filtered, and then dried by IR lamp.

2.3. CRYSTALLIZATION OF CFSAPO-1

Table I shows data related to crystallization experiments.

Unwanted products are formed at higher temperatures $(200^{\circ}C)$ or lower temperatures $(120^{\circ}C)$. The best reaction temperature is about $150^{\circ}C$ with a reaction period of 23 h. When

Table I. Synthesis examples

No.	Molar o	compositi	ion of rea	actants		Reaction conditions		Phases of product	
	$\overline{\text{Al}_2\text{O}_3}$	P ₂ O ₅	SiO ₂	MA	H ₂ O	Temperature (°C)	Period (h)		
1	1	1	0.4	1	40	120	144	CFSAPO-1 + unknown impurity	
2	1	1	0.4	1	40	150	23	CFSAPO-1	
3	1	1	0.4	1	40	200	23	CFSAPO-1 + unknown impurity	
4	1	1	1	1	40	150	23	CFSAPO-1 + unknown impurity	
5	1	1.2	1	1	40	150	23	CFSAPO-1	
6	1	1.2	1	1.2	40	150	29	CFSAPO-1	
7	1	0.8	1	1	40	150	23	CFSAPO-1	
8	1	1	1	1.2	40	150	23	CFSAPO-1	
9	1	1	1	0.8	40	150	23	CFSAPO-1	
10	1	1	1	0.8	40	150	72	CFSAPO-1 + Tridymite ^a	
11	1	1	2	1	40	150	23	CFSAPO-1	
12	1	1	2	1	40	150	72	CFSAPO-1	
13	1	1	3	1	40	150	72	CFSAPO-1	

^a Tridymite is a silicophosphoaluminate with the structure of AlPO₄ tridymite.

the molar composition of SiO₂ was higher than 1, the product purity was influenced by the concentration of MA but not by that of P_2O_5 and SiO₂. The molar composition of the reaction mixture for CFSAPO-1 crystallization is as follows: MA: Al₂O₃: P_2O_5 : SiO₂: $H_2O = (0.8-1.2): 1: (0.8-1.2): (0.4-3): 40$.

3. Properties of CFSAPO-1

3.1. MORPHOLOGY AND OPTICAL PROPERTIES

The microphoto of CFSAPO-1 (see Figure 1) was taken with a Shimadzu S-520 scanning electron microscope. It shows that spherical crystals of CFSAPO-1 up to a size of $150-200 \,\mu\text{m}$ are aggregates of small rectangular plates. Upon investigation by an optical microscope with crossed Nicols and a gypsum plate inserted, a weak birefringence of CFSAPO-1 was found.

Fig. 1. Scanning electron micrograph of CFSAPO-1.

3.2. CHEMICAL COMPOSITION

The results of chemical analysis of CFSAPO-1 are as follows: $Al_2O_3 = 31.99\%$, $P_2O_5 = 44.03\%$, $SiO_2 = 6.07\%$, MA = 10.74%, $H_2O = 7.17\%$. The molar composition of CFSAPO-1 is: 1.10 MA · 1.00 $Al_2O_3 \cdot 0.99 P_2O_5 \cdot 0.32 SiO_2 \cdot 1.27 H_2O$.

3.3. THERMOANALYSIS

Thermograms of the original CFSAPO-1 in air (see Figure 2) were performed with a Rigaku PTC-10A thermoanalysis instrument at 10° C/min from room temperature to 1000° C.

Differential thermal analysis of CFSAPO-1 shows two endotherms at 78° C and 258° C accompanied by a weight loss. The endotherms at 78° C and 258° C may be associated with dehydration and deamination, respectively. In the range 258° C to 1000° C, the DTA curve does not show distinct thermal effects, but X-ray diffraction patterns indicate that there are two phase changes in this temperature range.

3.4. X-RAY POWDER DIFFRACTION

X-ray powder diffraction patterns (Figure 3) were obtained with a Rigaku D/MAX-IIA diffractometer. Experimental conditions: $CuK\alpha 40 \text{ kV } 20 \text{ mA}$, scan speed 4°/min, scan range 5°-35° (2 θ).

There is no change in the framework of CFSAPO-1 calcined at 140° C, but two transformations into more stable forms occur in the range 300° C- 800° C, and a structure of AlPO₄ tridymite is formed on heating above 800° C. The original product and the sample calcined at 140° C are called CFSAPO-1(A). Forms calcined in the range of 300° C- 600° C and 600° C- 800° C are called CFSAPO-1(B) and CFSAPO-1(C), respectively. The characteristic X-ray powder diffraction data of CFSAPO-1(A), (B), and (C) are given in Table II. The transformations at 600° C and 800° C detected by diffraction do not show distinctly thermal effects on the DTA curve.

CFSAPO	-1(A)		FSAPO-1	(B)		CFSAPO-1(C)		
$2\theta(\text{deg})$	d(Å)	Relative intensity	$2\theta(\text{deg})$	d(Å)	Relative intensity	$2\theta(\text{deg})$	d(Å)	Relative intensity
10.20	8.67	100	9.88	8.95	100	9.83	9.00	2
10.40	8.51	60	12.18	7.27	25	13.07	6.77	10
11.87	7.46	7	12.61	7.02	18	16.70	5.31	89
13.00	6.81	31	15.62	5.67	6	17.18	5.16	37
15.42	5.75	7	16.05	5.52	34	19.27	4.61	100
15.54	5.70	9	18.56	4.78	56	20.38	4.36	4
16.49	5.38	8	20.11	4.42	68	21.54	4.13	41
17.12	5.18	2	20.93	4.24	5	23.73	3.75	2
18.63	4.76	25	22.38	3.97	4	24.56	3.62	17
19.06	4.66	37	22.94	3.88	8	25.65	3.47	45
21.43	4.15	1	23.63	3.77	40	26.37	3.38	10
22.10	4.02	3	24.58	3.62	66	26.82	3.32	25
23.02	3.86	8	25.41	3.51	26	28.28	3.16	10
23.93	3.72	62	25.95	3.43	10	28.82	3.10	8
24.22	3.67	36	27.06	3.30	64	30.73	2.91	12
24.48	3.64	19	27.37	3.26	92	32.60	2.75	3
25.72	3.46	13	28.39	3.14	7			-
26.16	3.41	35	28.88	3.09	26			
26.62	3.35	13	30.80	2.90	3			
27.73	3 22	32	32.30	2.77	17			
28.11	3.17	39	32.92	2.72	8			
29.07	3.07	3	34.07	2.63	11			
29.43	3.03	18	•					
30.02	2.98	3						
30.87	2.90	10						
31.62	2.20	4						
32.63	2.00	6						
33 30	2.17	4						
33.39	2.00	6						
34.69	2.59	11						

Table II. X-ray powder diffraction data of CFSAPO-1

^a Rigaku diffractometer, $CuK\alpha$ radiation.

3.5. INFRARED SPECTRA

IR spectra were recorded with a Perkin-Elmer 983G IR spectrometer (Figure 4) in the range $4000-200 \text{ cm}^{-1}$. Discs were made by mixture with KBr. The IR spectrum of CFSAPO-1(A) is complicated, particularly in the region $1200-200 \text{ cm}^{-1}$. It may mean that CFSAPO-1(A) possesses an imperfect tetrahedral framework. The vibration at 3240 cm^{-1} is assigned to an N-H stretch, and absorptions at 1511 cm^{-1} and 1469 cm^{-1} are assigned to N-H bend vibrations. After calcination, these three vibrations disappear in the IR spectrum of CFSAPO-1(B) since the methylamine is no longer present.

After calcination at 500 °C for 8 h, the number of IR vibrations in CFSAPO-1(B) is reduced, and they show a characteristic pattern of a tetrahedral framework structure. The strongest vibration at 1112 cm⁻¹ can be assigned to an asymmetric stretch of the aluminophosphate tetrahedron, and a strong absorption at 478 cm⁻¹ to a bending vibration of T-O bonds [8,9]. The IR Spectrum of CFSAPO-1(C) formed after calcination at 700 °C for 8 h also shows

characteristics of a tetrahedral structure just like CFSAPO-1(B). Adsorption experiments indicated that CFSAPO-1(C) was a dense form without a porous structure, adsorbing water only at a very low level. The vibrations of O--H bonds at 1633 cm⁻¹ and 3442 cm⁻¹ are probably caused by water adsorbed on the outer surface.

3.6. ADSORPTION PROPERTIES

Adsorption isotherms of CFSAPO-1(B) shown in Figure 5 were obtained with a Sartorius 4433 ultra-microbalance. It shows that CFSAPO-1(B) possesses a structure with

Fig. 5. Adsorption isotherms of CFSAPO-1(B).

the characteristics of a molecular sieve. Since the adsorption capacity of cyclohexane is about 0.5%, the free dimension of the adsorption window of CFSAPO-1(B) is between 5.8-6.2 Å. According to the adsorption capacities of water, methanol, and benzene, the major adsorption cavities of CFSAPO-1(B) may constructed by 10 or 12 rings.

4. Conclusions

CFSAPO-1(B) possesses molecular sieve properties with a pore window size of 5.8 to 6.2 Å. There were several SAPO molecular sieves reported [2,3], such as SAPO-11 (Pr_2NH as template, 6 Å in window size), SAPO-31 (Pr_2NH , > 6.2 Å), SAPO-37 (TMAOH and TPAOH, > 6.2 Å), and SAPO-41 (TBAOH, 6.2 Å). However, CFSAPO-1 was prepared in a system with methylamine. This has not been reported in references on the synthesis of silicophosphoaluminate molecular sieves [2,3]. Since the X-ray powder pattern of CFSAPO-1 is entirely different from that of all other AlPO₄ and SAPO molecular sieves [1,2,3], including SAPO-11, 31, 37, and 41, it demonstrates the existence of a novel framework structure. This indicates that SAPO molecular sieves with larger pore sizes could be synthesised by using a smaller organic base as a template.

Acknowledgement

This work was supported by the Science Fund of the Chinese Academy of Sciences.

References

- 1. S. T. Wilson, B. M. Lok, and E. M. Flanigen: European Patent 43, 562 (1982).
- 2. B. M. Lok, C. A. Messina, R. L. Patton, R. T. Gajek, T. R. Cannan, and E. M. Flanigen: U.S. Patent 4, 440, 871 (1984).
- 3. S. W. Kaiser: European Patent 105, 512 (1984).
- 4. C. A. Messina, B. M. Lok, and E. M. Flanigen: European Patent 131, 946 (1985).
- 5. S. T. Wilson and E. M. Flanigen: European Patent 132, 708 (1985).
- 6. S. T. Wilson, B. M. Lok, E. M. Flanigen, C. A. Messina and R. T. Cannan: ACS Symposium Series, No. 218 (Intrazeolite Chemistry) (1983), pp. 79-106.
- 7. E. G. Derouane and R. Ballmoos: European Patent 147, 991 (1985).
- 8. D. W. Breck: Zeolite Molecular Sieves, Wiley, New York (1972), pp. 415-424.
- 9. Y. Long, L. Dong, and Z. Gao: Chem. J. Chinese Univ. 7, 100 (1986).